Kinetic Data Structures:Introduction and Motion in Computational Geometry
Introduction
Motion is ubiquitous in the physical world, yet its study is much less developed than that of another common physical modality, namely shape. While we have several standardized mathematical shape descriptions, and even entire disciplines devoted to that area—such as Computer-Aided Geometric Design (CAGD)—the state of formal motion descriptions is still in flux. This in part because motion descriptions span many levels of detail; they also tend to be intimately coupled to an underlying physical process generating the motion (dynamics). Thus, until recently, proper abstractions were lacking and there was only limited work on algorithmic descriptions of motion and their associated complexity measures. This chapter aims to show how an algorithmic study of motion is intimately tied via appropriate data structures to more classical theoretical disciplines, such as discrete and computational geometry. After a quick survey of earlier work (Sections 23.2 and 23.3), we devote the bulk of this chapter to discussing the framework of Kinetic Data Structures (Section 23.4) [16, 32] and its many applications (Section 23.5). We also briefly discuss methods for querying moving objects (Section 23.6).
Motion in Computational Geometry
A number of other authors have dealt with geometric problems arising from motion, such as collision detection or minimum separation determination [35, 41, 42]. See also Chapter 56. For instance, [42] shows how to check in subquadratic time whether two collections of simple geometric objects (spheres, triangles) collide with each other under specified polynomial motions.
Comments
Post a Comment