Splay Trees:Variants of Splay Trees and Top-Down Splaying.

Variants of Splay Trees and Top-Down Splaying

Various variants, modifications and generalization of Splay trees have been studied, see for example [2, 11, 12, 14]. Two of the most popular “variants” suggested by Sleator and Tarjan [13] are “semi-splay” and “simple-splay” trees. In simple splaying the second rotation in the “zig-zag” case is done away with (i.e., we stop at the middle figure in Figure 12.3). Simple splaying can be shown to have a larger constant factor both theoretically [13] and experimentally [11]. In semi-splay [13], in the zig-zig case (see Figure 12.2) we do only the first rotation (i.e., stop at the middle figure) and continue splaying from node y instead of x. Sleator and Tarjan observe that for some access sequences “semi-splaying” may be better but for some others the usual splay is better.

“Top-down” splay trees [13] are another way of implementing splay trees. Both the trees coincide if the node being searched is at an even depth [11], but if the item being searched is at an odd depth, then the top-down and bottom-up trees may differ ([11, Theorem 2]).

Some experimental evidence suggests [3] that top-down splay trees [11, 13] are faster in practice as compared to the normal splay trees, but some evidence suggests otherwise [16]. In splay trees as described, we first search for an item, and then restructure the tree. These are called “bottom-up” splay trees. In “top-down” splay trees, we look at two nodes at a time, while searching for the item, and also keep restructuring the tree until the item we are looking for has been located.

Basically, the current tree is divided into three trees, while we move down two nodes at a time searching for the query item

left tree: Left tree consists of items known to be smaller than the item we are searching.

right tree: Similarly, the right tree consists of items known to be larger than the item we are searching.

middle tree: this is the subtree of the original tree rooted at the current node.

Basically, the links on the access path are broken and the node(s) which we just saw are joined to the bottom right (respectively left) of the left (respectively right) tree if they contain item greater (respectively smaller) than the item being searched. If both nodes are left children or if both are right children, then we make a rotation before breaking the link. Finally, the item at which the search ends is the only item in the middle tree and it is made the root. And roots of left and right trees are made the left and right children of the root.

Comments

Popular posts from this blog

Binary Space Partitioning Trees:BSP Tree as a Hierarchy of Regions.

Data Structure Visualization:Introduction and Value of Data Structure Rendering

0/1 Knapsack Problem Memory function.