Floorplan Representation in VLSI:Rectilinear Shape Handling and Conclusions
Rectilinear Shape Handling
Shape handling makes feasible the treating of blocks with arbitrary shapes. It makes sense especially in deep sub-micron technology, where, with the number of routing layers increasing, wires are placed in layers other than the device layer, and the placement becomes more like a packing problem: a set of macro blocks are packed together without overlaps, with some objective functions minimized.
The basic idea to handle the arbitrary-shaped blocks is to partition them into rectangles, and then the representations and the optimizing strategies described above can be used. Fig. 53.34(a) and (b) demonstrate two schemes of partitioning, the horizontal one and the vertical one. However, if the generated rectangle blocks were treated as individual ones, it would be quite impossible to recover the original blocks. The generated rectangle blocks may be shifted (Fig. 53.34(c)) or separated (Fig. 53.34(d)). So extra constraints have to be imposed on the generated rectangle blocks in order to keep the original blocks’ shapes.
One proposed method of adding extra constraints is illustrated with Fig. 53.35(b) for horizontal and (c) for vertical. The vertexes in the constraint graph correspond to the generated rectangle blocks, while the direct edges denote the relative positions of the blocks. For example, an edge from ‘a’ to ‘b’ with a weight of 1 means that block ‘b’ lies to the right of ‘a’, the distance between their left boundaries is 1, which is exactly the width of ‘a’.
Because the relative-position constraints are always represented with the format such as “larger than or equal to” during optimization, inversely directed edges, such as the edge from ‘b’ to ‘a’ with a negative weight, helps to determine the position relationships solely.
Conclusions
Floorplan representation is an important issue for floorplan optimization. We classify the representations into graph based and placement based methods based on the different strategies used in deriving the representations. The graph-based methods are based on the constraint graphs, which include the constraint graphs, the corner stitching, the twin binary tree and the O-tree. The placement-based methods are based on the local topology relations in deriving the floorplans, which include the sequence pair, the bounded sliceline grid, the corner block list and the slicing tree.
The floorplans can also be classified into different categories: general, mosaic and slicing floorplans. Slicing floorplan is a subset of mosaic floorplan, which is again a subset of the general floorplan. We have different representations for different types of floorplans. The constraint graphs, the corner stitching, the sequence pair, the bounded sliceline grid and the O-trees are for general floorplans. The twin binary tree and the corner block list are for mosaic floorplans. The slicing tree is for slicing floorplans. Different representations have different solution spaces and time complexities to derive a floorplan.
Comments
Post a Comment